Glioblastoma Recurrence after Cediranib Therapy in Patients: Lack of “Rebound” Revascularization as Mode of Escape
Open Access
- 1 January 2011
- journal article
- Published by American Association for Cancer Research (AACR) in Cancer Research
- Vol. 71 (1), 19-28
- https://doi.org/10.1158/0008-5472.can-10-2602
Abstract
Recurrent glioblastomas (rGBM) invariably relapse after initial response to anti-VEGF therapy. There are 2 prevailing hypotheses on how these tumors escape antiangiogenic therapy: switch to VEGF-independent angiogenic pathways and vessel co-option. However, direct evidence in rGBM patients is lacking. Thus, we compared molecular, cellular, and vascular parameters in autopsy tissues from 5 rGBM patients who had been treated with the pan-VEGF receptor tyrosine kinase inhibitor cediranib versus 7 patients who received no therapy or chemoradiation but no antiangiogenic agents. After cediranib treatment, endothelial proliferation and glomeruloid vessels were decreased, and vessel diameters and perimeters were reduced to levels comparable to the unaffected contralateral brain hemisphere. In addition, tumor endothelial cells expressed molecular markers specific to the blood–brain barrier, indicative of a lack of revascularization despite the discontinuation of therapy. Surprisingly, in cediranib-treated GBM, cellular density in the central area of the tumor was lower than in control cases and gradually decreased toward the infiltrating edge, indicative of a change in growth pattern of rGBMs after cediranib treatment, unlike that after chemoradiation. Finally, cediranib-treated GBMs showed high levels of PDGF-C (platelet-derived growth factor C) and c-Met expression and infiltration by myeloid cells, which may potentially contribute to resistance to anti-VEGF therapy. In summary, we show that rGBMs switch their growth pattern after anti-VEGF therapy—characterized by lower tumor cellularity in the central area, decreased pseudopalisading necrosis, and blood vessels with normal molecular expression and morphology—without a second wave of angiogenesis. Cancer Res; 71(1); 19–28. ©2011 AACR.Keywords
All Related Versions
This publication has 30 references indexed in Scilit:
- Phase II Study of Cediranib, an Oral Pan–Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor, in Patients With Recurrent GlioblastomaJournal of Clinical Oncology, 2010
- Tumor-Associated Macrophages and Survival in Classic Hodgkin's LymphomaNew England Journal of Medicine, 2010
- Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and miceNeuro-Oncology, 2010
- Efficacy, Safety, and Potential Biomarkers of Sunitinib Monotherapy in Advanced Hepatocellular Carcinoma: A Phase II StudyJournal of Clinical Oncology, 2009
- Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant MetastasisCancer Cell, 2009
- High-grade glioma before and after treatment with radiation and Avastin: Initial observationsNeuro-Oncology, 2008
- HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and InvasionCancer Cell, 2008
- AZD2171, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, Normalizes Tumor Vasculature and Alleviates Edema in Glioblastoma PatientsCancer Cell, 2007
- Rapid vascular regrowth in tumors after reversal of VEGF inhibitionJournal of Clinical Investigation, 2006
- Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiationCancer Cell, 2004