Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation

Abstract
Accumulation rates of biogenic and lithogenic components were studied in 39 turbidite-free, well-dated sediment cores from the northern Indian Ocean to define the proportions of fluvial and eolian input and to reconstruct Quaternary patterns of coastal upwelling. The majority of dust deposited in the western Arabian Sea during the Holocene (about 100 × 106t yr−1) is advected from Arabia by northwesterly winds, which overlie the low-level southwest monsoon. The glacial increase in dust flux to 160 × 106t yr−1 culminated in the northern Arabian Sea, most probably due to (i) entrainment of dust, rich in chlorite, dolomite, and lithogenic carbonate in the then-dry Persian Gulf, and (ii) a southward shift of the mean position of the southwest monsoon during glacial summer. This shift is recorded in reduced accumulation rates of biogenic opal and increased rates of marine carbonate off Somalia and Oman. Both the terrigenous and biogenic sediment records show that the northwesterly winds and the southwest monsoon persisted over the last 27,000 yr, as well as the Asian continental summer heat low. However, the glacial seasonal time span of the southwest monsoon season was much reduced, most likely because of a delay in the seasonal onset of the southwest monsoon.