Influence of R-plasmid RP1 of Pseudomonas aeruginosa on cell wall composition, drug resistance, and sensitivity to cold shock

Abstract
R-plasmid RP1 was transferred to Pseudomonas aeruginosa cells, as indicated by their resistance to carbenicillin, ampicillin, cephaloridine, kanamycin, and tetracycline, and by the presence of a periplasmic beta-lactamase. The wild-type cells (RP1-) were lysed by ethylenediaminetetraacetic acid but not by ethylene-glycol-bis(2-aminoethyl ether)-N,N-tetraacetic acid, whereas cells carrying the plasmid (RP1+) were resistant to both these chelating agents. RP1+ and RP1- strains were both sensitive to the lytic action of polymyxin B and the lethal action of cold shock, but the effect was less marked in the RP1+ cultures. A proportion of the RP1+ cells surviving cold shock lost resistance to carbenicillin, tetracycline, and kanamycin. The chemical composition of whole cells and cell walls of RP1+ differed from that RP1- in the content of cation, phospholipid, and markers for lipopolysaccharide and peptidoglycan. Differences in cell wall composition, response to ethylenediaminetetraacetic acid and polymyxin B, and the effects of cold shock are all compatible with the hypothesis that RP1 confers changes in the cell envelope, probably in the outer membrane, of P. aeruginosa.