Blue-green injection lasers containing pseudomorphic Zn1−xMgxSySe1−y cladding layers and operating up to 394 K

Abstract
We describe the performance of blue‐green injection lasers containing Zn1−xMgxSySe1−y cladding layers. The devices have yielded the lowest reported threshold current densities (500 A/cm2) and the highest reported pulsed output powers (500 mW) at room temperature. Lasing has been observed at temperatures as high as 394 K. The room temperature and 85 K lasing wavelengths are 516 and 496 nm, respectively. The use of Zn1−xMgxSySe1−y, instead of ZnSzSe1−z, cladding layers provides a clear improvement in optical confinement, demonstrated by the widening of the far‐field pattern in the direction perpendicular to the layers. The lasers are separate‐confinement heterostructures with a ZnS0.06Se0.94 waveguiding region and a single Cd0.2Zn0.8Se strained quantum well. The entire structure is pseudomorphic with the GaAs substrate.