Abstract
The regulation of cephalosporin synthesis in Cephalosporium acremonium was studied in a simple chemically-defined medium with glucose as the carbon source. Antibiotic synthesis depended on the phosphate content of the medium. At phosphate concentrations above 2.75 mM maximum antibiotic titres were not reached while glucose uptake and growth rates were increased. Phosphate exerted its effect indirectly by regulating the rate of glucose consumption. The negative effect of high phosphate concentrations could be overcome completely by controlling the sugar supply in fed-batch and chemostat experiments. High actual concentrations of phosphate or of glucose alone had no direct negative effect on antibiotic synthesis.