ELECTROPHYSIOLOGICAL RECORDINGS FROM OXYTOCINERGIC NEURONES DURING SUCKLING IN THE UNANAESTHETIZED LACTATING RAT

Abstract
A method is described for making extracellular recordings of the spontaneous activity of single hypothalamic neurones in unanaesthetized, freely moving, lactating rats using chronically implanted micro-wire electrodes. Extracellular recordings taken from individual neurones were maintained for periods of between 1 and 12 days. These records were not affected by any normal movement of the animal. As several micro-wires were implanted into each animal it was possible to make simultaneous recordings from several different hypothalamic sites in the same animal. Some recordings were identified as those from magnocellular neurones in the paraventricular nucleus on the basis of antidromic invasion after electrical stimulation of the neurohypophysis. Milk ejection in response to the prolonged sucking of ten or more pups was intermittent, and individual milk ejections recurred at intervals of 2–10 min throughout each period of nursing. The rise in intramammary pressure at milk ejection was associated with a vigorous extensor response from the pups. This was monitored by radar to provide an index of milk ejection in the unanaesthetized rat. Eleven antidromically identified neurones were recorded through 321 milk ejections. Eight of these neurones displayed a transient (2–6 s) and very substantial acceleration in discharge at the time predicted for oxytocin release, i.e. 10–12 s before milk ejection. The background discharge of these cells was 0·1–2·6 action potentials/s; this increased to 16–50 action potentials/s during the brief period of accelerated activity. Twenty-five neurones were studied during 365 milk ejections in rats which did not have a stimulating electrode implanted in the neurohypophysis. Thirteen of these neurones displayed a burst of high frequency discharge before each milk ejection, similar to that described for the antidromically identified neurones. Two of the non-responsive cells displayed a phasic pattern of discharge, characteristic of vasopressinergic neurone discharge recorded in anaesthetized rats. These observations of putative oxytocinergic neurones in unanaesthetized, freely moving rats are identical with those previously made on anaesthetized rats, and establish that the high frequency burst of electrical activity displayed by magnocellular neurones some 10–12 s before milk ejection is responsible for oxytocin release under normal physiological circumstances.