Abstract
In this paper, we present a novel approach within the sequential framework to develop practical motion planners for many degrees of freedom (DOF) arms. In this approach, each of the sub-problem is solved by using numerical potential fields defined over bitmap-based representations of the 2-dimensional sub-spaces. Furthermore, an efficient backtracking mechanism based on a novel notion of virtual forbidden regions in these 2-dimensional subspaces is presented. This novel approach leads to much more efficient and robust motion planners than a previously reported visibility graph (in the 2-dimensional subspaces) based implementation. We have conducted extensive experiments for planar arms with up to 8-DOF among randomly placed obstacles. Although it is not complete, the planner never failed for the examples in hundreds of simulations, and very small backtracking levels were needed. We have implemented the planner for 3-dimensional workspaces and an illustrative example for a 7-DOF manipulator shows the promise of our approach.<>

This publication has 10 references indexed in Scilit: