Formation of CLC-0 Chloride Channels from Separated Transmembrane and Cytoplasmic Domains

Abstract
CLC-0, a member of the CLC family of Cl--conducting ion channels, consists of an N-terminal hydrophobic core and a C-terminal region that is thought to be cytoplasmic. This study provides evidence that the C-terminal region is a mechanistically relevant cytoplasmic domain of the CLC-0 ion channel. Both a point mutation and a 37-residue deletion in this region cause drastic alterations in voltage-dependent gating of CLC-0 current expressed in Xenopus oocytes. CLC-0 current is not observed when the entire C-terminal region is deleted, but functional channels are efficiently reconstituted by co-injection of separate cRNA constructs encoding the N-terminal transmembrane and the C-terminal cytoplasmic domains. Moreover, reconstitution of CLC-0 can be achieved by co-injection of cRNA encoding the transmembrane domain along with Escherichia coli-expressed C-terminal domain polypeptide.