Abstract
The neuropharmacological mechanisms underlying the behavioral effects ofd-lysergic acid diethylamide (LSD) were assessed by comparing the discriminative stimulus properties of LSD with those of agonists and antagonists that act selectively at putative serotonin (5-hydroxytryptamine; 5-HT) receptor subtypes (5-HT1 and 5-HT2). Male Sprague-Dawley rats (N=23) were trained to discriminate LSD (0.08 mg/kg) from saline and given substitution tests with the following agents: 8-hydroxy-2(di-n-propylamino) tetralin (8-OHDPAT; 0.02–0.64 mg/kg), Ru 24969 (0.2–3.2 mg/kg),m-chlorophenylpiperazine (MCPP; 0.1–1.6 mg/kg), 1-(m-trifluoromethylphenyl)piperazine (TFMPP; 0.1–1.6 mg/kg), and quipazine (0.2–3.2 mg/kg). Only quipazine mimicked LSD. In combination tests, BC 105 (0.2–3.2 mg/kg), 2-bromolysergic acid diethylamide (BOL; 0.1–1.6 mg/kg), Ly 53857 (0.4–3.2 mg/kg), metergoline (0.05–0.8 mg/kg), ketanserin (0.2–3.2 mg/kg), and pipenperone (0.0025–0.08 mg/kg), all of which act as 5-HT2 antagonists, blocked the LSD cue; only spiperone (0.02–0.32 mg/kg) was without effect. Although commonalities may exist among “5-HT agonists”, the present results demonstrate that such “agonists” are not identical. Since putative 5-HT1 agonists do not mimic LSD and the LSD cue is potently blocked by 5-HT2 antagonists, it appears that 5-HT2 neuronal systems are of greater importance than 5-HT1 systems in mediating the discriminative stimulus and, perhaps, other effects of LSD.