Gas-phase ions of solute species from charged droplets of solutions

Abstract
Charged droplets, produced by electrostatic dispersion of solutions of amino acids and peptides are driven by a potential difference a countercurrent to a flow of heated nitrogen bath gas. Evaporation of solvent from those droplets increases surface charge density, resulting in subdivision into smaller charged droplets. Each smaller droplet repeats that sequence until the ultimate result is a dispersion of solvent-free solute ions in the bath gas. Surprisingly, mass spectrometric analyses of the final ion-bath gas mixtures showed that the relative abundances of the desolvated ions were substantially higher when the nitrogen bath gas contained vapor of a polar solvent species than when no such solvent vapor was present. Adding solvent vapor to the background bath gas can certainly not increase, but must decrease, the net rate of solvent evaporation from the charged droplets. Consequently, the observed enhancement of ion formation by the presence of solvent vapor in the bath gas constitutes persuasive evidence that the observed solute ions cannot have been produced by the charged residue mechanism originally suggested by Dole et al. [Dole M, et al. (1968) J Chem Phys 49:2240-2249 and Dole M, Rheude A, Mack LL (1970) J Chem Phys 52:4977-4986]. It is therefore concluded that electrospray ions are most likely produced by the ion evaporation mechanism of Iribarne and Thomson [Iribarne JV, Thomson BA (1975) J Chem Phys 64:2287-2294]. Moreover, and probably as important, this observed signal enhancement constitutes a welcome increase in detection sensitivity.