Inactivation of human high molecular weight kininogen by human mast cell tryptase.

Abstract
Tryptase, the major neutral protease of human pulmonary mast cell secretory granules, rapidly inactivates human high m.w. kininogen (HMWK) in vitro. HMWK (5600 nM) lost 50% of its capacity to release kinin in response to kallikrein after a 5-min incubation with tryptase (31 nM), even though kinin activity was neither generated nor, when bradykinin was incubated with tryptase, destroyed by tryptase. The procoagulant activity of HMWK (51 nM) and the purified procoagulant chain (40 nM) that is derived from HMWK were each 72% inactivated after 7 min of incubation with tryptase (0.04 nM and 0.02 nM, respectively). Human urinary and pancreatic kallikrein did not inactivate this procoagulant activity under conditions in which kinin generation occurs. Complete cleavage of native single-chain HMWK by tryptase occurred in less than 10 min as analyzed by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. The major products formed during the initial 2 min were proteins of 100,000 and 95,000 apparent m.w., and by 10 to 30 min were fragments of 74,000 and 67,000 apparent m.w. Reduction of these cleavage products yielded two major fragments of 67,000 and 66,000 apparent m.w. that were both present by 0.17 min. The presence of lower m.w. products, thought to be primarily from the carboxy-terminal procoagulant region of HMWK, were also detected with and without reduction. The capacity of tryptase to inactivate HMWK is consistent with the ability of other mast cell-derived mediators, such as heparin proteoglycan and prostaglandin D2, to suppress blood coagulation and thrombosis, and may play an important role in the biology of mast cell-dependent events in vivo.