Distinct proteomic profiles of amphetamine self-administration transitional states

Abstract
In the rat, continuous access to d-amphetamine (d-AMPH) leads to lengthy bouts of self-administration, voluntary abstinence, and relapse to self-administration. Previous studies have revealed that the progression from psychostimulant self-administration to abstinence to relapse is mediated in part by the ventral hippocampus. Stimulation of the ventral subiculum (vSub) during voluntary abstinence from d-AMPH self-administration reinstates self-administration and increases nucleus accumbens (NAc) dopamine efflux. Quantitative proteomic examination of the hippocampus from rats naïve to amphetamine, during a self-administration session ‘Binge’, during voluntarily abstinence ‘Abstinent’, and after reinstatement of self-administration ‘Relapse’, revealed a differential proteomic state during abstinence. Actin- and cytoskeletal-related proteins were over-represented in the changes occurring during abstinence and suggest a decrease in actin filament polymerization. These changes may underlie alterations in neuronal tone during abstinence that could affect both neurotransmission and behavior. These data provide the first classification of addiction-related behaviors based on clustering of quantitative proteomic measurements.

This publication has 45 references indexed in Scilit: