Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease
Top Cited Papers
Open Access
- 3 September 2012
- journal article
- Published by Springer Nature in Fibrogenesis & Tissue Repair
- Vol. 5 (1), 15
- https://doi.org/10.1186/1755-1536-5-15
Abstract
Fibroblasts comprise the largest cell population in the myocardium. In heart disease, the number of fibroblasts is increased either by replication of the resident myocardial fibroblasts, migration and transformation of circulating bone marrow cells, or by transformation of endothelial/epithelial cells into fibroblasts and myofibroblasts. The primary function of fibroblasts is to produce structural proteins that comprise the extracellular matrix (ECM). This can be a constructive process; however, hyperactivity of cardiac fibroblasts can result in excess production and deposition of ECM proteins in the myocardium, known as fibrosis, with adverse effects on cardiac structure and function. In addition to being the primary source of ECM proteins, fibroblasts produce a number of cytokines, peptides, and enzymes among which matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitor of metalloproteinases (TIMPs), directly impact the ECM turnover and homeostasis. Function of fibroblasts can also in turn be regulated by MMPs and TIMPs. In this review article, we will focus on the function of cardiac fibroblasts in the context of ECM formation, homeostasis and remodeling in the heart. We will discuss the origins and multiple roles of cardiac fibroblasts in myocardial remodeling in different types of heart disease in patients and in animal models. We will further provide an overview of what we have learned from experimental animal models and genetically modified mice with altered expression of ECM regulatory proteins, MMPs and TIMPs.Keywords
This publication has 147 references indexed in Scilit:
- Heart repair by reprogramming non-myocytes with cardiac transcription factorsNature, 2012
- Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repairThe EMBO Journal, 2011
- The origin of fibroblasts and mechanism of cardiac fibrosisJournal of Cellular Physiology, 2010
- Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined FactorsCell, 2010
- Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heartDevelopmental Biology, 2010
- Direct conversion of fibroblasts to functional neurons by defined factorsNature, 2010
- Macrophage roles following myocardial infarctionInternational Journal of Cardiology, 2008
- Circulating Stromelysin‐1 (MMP‐3): A novel predictor of LV dysfunction, remodelling and all‐cause mortality after acute myocardial infarctionEuropean Journal of Heart Failure, 2008
- Membrane type 1-matrix metalloproteinase: Substrate diversity in pericellular proteolysis☆Seminars in Cell & Developmental Biology, 2007
- Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined FactorsCell, 2006