In order to specify the recognition requirements of the human DNA (cytosine-5-)-methyltransferase, two isomeric 48mers were synthesized so as to link a long block of DNA with a shorter complementary block of DNA through a tether consisting of five thymidine residues. These isomeric foldback molecules, differing only in the location of the 5-methyldeoxycytosine, were shown to be unimolecular, to contain a region of duplex DNA, and to contain a region of single-stranded DNA. When used as substrates for the DNA methyltransferase, only one of the isomers was methylated. A comparison of the structures of the two isomers allows us to begin to define the potential sites of interaction between the enzyme and the three nucleotides forming a structural motif consisting of 5-methyldeoxycytosine, its base-paired deoxyguanosine, and a deoxycytosine 5' to the paired deoxyguanosine.