Some functional properties of nonpolymerizable and polymerizable tropomyosin

Abstract
The binding of125I-labelled nonpolymerizable (brain or carboxypeptidase A-treated skeletal muscle) and polymerizable (intact skeletal muscle) tropomyosin to muscle F-actin was studied by ultracentrifugation under various conditions. The amount of nonpolymerizable tropomyosin bound to F-actin both in 0.1m KCl and in 7mm MgCl2 was much lower than that of the polymerizable one. In the presence of MgCl2 the amount of nonpolymerizable tropomyosin bound to F-actin approached saturation level. Under these conditions, however, the amount of skeletal muscle tropomyosin bound exceeded saturation, suggesting formation of both head-to-tail polymers and side-to-side aggregates. The latter seems to be responsible for the inhibition of acto-heavy meromyosin ATPase activity which is caused by skeletal muscle tropomyosin but not by nonpolymerizable tropomyosin. Nonpolymerizable tropomyosin can substitute for the rabbit skeletal muscle tropomyosin in the regulatory system operating in skeletal muscle. Inhibition of ATPase activity of acto-heavy meromyosin by nonpolymerizable tropomyosin in the presence of troponin and the absence of calcium ions is less than that obtained with polymerizable tropomyosin. The inhibition of ATPase activity is directly correlated with the extent of binding of nonpolymerizable tropomyosin to F-actin under the conditions of the ATPase assay.