Heartbeat control in the medicinal leech: A model system for understanding the origin, coordination, and modulation of rhythmic motor patterns
- 1 July 1995
- journal article
- review article
- Published by Wiley in Journal of Neurobiology
- Vol. 27 (3), 390-402
- https://doi.org/10.1002/neu.480270311
Abstract
We have analyzed in detail the neuronal network that generates heartbeat in the leech. Reciprocally inhibitory pairs of heart interneurons form oscillators that pace the heartbeat rhythm. Other heart interneurons coordinate these oscillators. These coordinating interneurons, along with the oscillator interneurons, form an eight‐cell timing oscillator network for heartbeat. Still other interneurons, along with the oscillator interneurons, inhibit heart motor neurons, sculpting their activity into rhythmic bursts. Critical switch interneurons interface between the oscillator interneurons and the other premotor interneurons to produce two alternating coordination states of the motor neurons. The periods of the oscillator interneurons are modulated by endogenous RFamide neuropeptides. We have explored the ionic currents and graded and spike‐mediated synaptic transmission that promote oscillation in the oscillator interneurons and have incorporated these data into a conductance‐based computer model. This model has been of considerable predictive value and has led to new insights into how reciprocally inhibitory neurons produce oscillation. We are now in a strong position to expand this model upward, to encompass the entire heartbeat network, horizontally, to elucidate the mechanisms of FMRFamide modulation, and downward, to incorporate cellular morphology. By studying the mechanisms of motor pattern formation in the leech, using modeling studies in conjunction with parallel physiological experiments, we can contribute to a deeper understanding of how rhythmic motor acts are generated, coordinated, modulated, and reconfigured at the level of networks, cells, ionic currents, and synapses. © 1995 John Wiley & Sons, Inc.Keywords
This publication has 48 references indexed in Scilit:
- The dynamic clamp: artificial conductances in biological neuronsTrends in Neurosciences, 1993
- Motor-pattern-generating networks in invertebrates: modeling our way toward understandingTrends in Neurosciences, 1992
- Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model NeuronsNeural Computation, 1992
- Identification of RFamide neuropeptides in the medicinal leechPeptides, 1991
- Modulation of Neural Networks for BehaviorAnnual Review of Neuroscience, 1991
- Leydig neuron activity modulates heartbeat in the medicinal leechJournal of Comparative Physiology A, 1990
- Emerging Principles Governing the Operation of Neural NetworksAnnual Review of Neuroscience, 1989
- Computer software for development and simulation of compartmental models of neuronsComputers in Biology and Medicine, 1989
- Voltage oscillations in the barnacle giant muscle fiberBiophysical Journal, 1981
- Number and distribution of neurons in leech segmental gangliaJournal of Comparative Neurology, 1980