A role for ultraviolet A in solar mutagenesis.

Abstract
It is well established that exposure to solar UVB (290-320 nm) gives rise to mutations in oncogenes and tumor suppressor genes that initiate the molecular cascade toward skin cancer. Although UVA (320-400 nm) has also been implicated in multistage photocarcinogenesis, its potential contribution to sunlight mutagenesis remains poorly characterized. We have determined the DNA sequence specificity of mutations induced by UVB (lambda > 290 nm), and by UVA (lambda > 350 nm), at the adenine phosphoribosyltransferase locus of Chinese hamster ovary cells. This has been compared to results previously obtained for stimulated sunlight (lambda > or = 310 nm) and 254-nm UVC in the same gene. We demonstrate that T-->G transversions, a generally rare class of mutation, are induced at high frequency (up to 50%) in UVA-exposed cells. Furthermore, this event comprises a substantial proportion of the simulated sunlight-induced mutant collection (25%) but is significantly less frequent (P < 0.05) in cells irradiated with either UVB (9%) or UVC (5%). We conclude that the mutagenic specificity of broad-spectrum solar light in rodent cells is not determined entirely by the UVB component and that UVA also plays an important role.