Thermostable reduced nicotinamide adenine dinucleotide oxidase: application to amperometric enzyme assay

Abstract
The use in amperometric enzyme assays of a highly stable, pH insensitive flavoenzyme, reduced nicotinamide adenine dinucleotide oxidase (NADH oxidase), from the thermophilic organism Thermus aquaticus is described. The enzyme catalyses the oxidation of reduced nicotinamide adenine dinucleotide with concomitant two-electron reduction of dioxygen to hydrogen peroxide. In addition the enzyme used a substituted ferrocene as an alternative mediator of electron transfer. Hydrogen peroxide was detected at +650 mV vs Ag/AgCl at a platinum electrode. The current produced by oxidation and hydrogen peroxide was directly proportional to NADH concentration. The enzyme was used in solution to reoxidize enzymatically generated NADH and served as a basis for amperometric enzyme amplification systems for immunoassay as well as for the detection of substrate concentration for oxidoreductase enzymes. In the presence of alcohol dehydrogenase a rapid production of current occurred upon addition of ethanol over a clinically significant range. Thermus aquaticus NADH oxidase appears to be ideally suited for future exploitation in amperometric sensors for oxidoreductase substrates, offering a number of advantages over previously reported methods.