In vivo expansion of T reg cells with IL-2–mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression
Top Cited Papers
Open Access
- 30 March 2009
- journal article
- research article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 206 (4), 751-760
- https://doi.org/10.1084/jem.20082824
Abstract
Via a transcription factor, Foxp3, immunoregulatory CD4(+)CD25(+) T cells (T reg cells) play an important role in suppressing the function of other T cells. Adoptively transferring high numbers of T reg cells can reduce the intensity of the immune response, thereby providing an attractive prospect for inducing tolerance. Extending our previous findings, we describe an in vivo approach for inducing rapid expansion of T reg cells by injecting mice with interleukin (IL)-2 mixed with a particular IL-2 monoclonal antibody (mAb). Injection of these IL-2-IL-2 mAb complexes for a short period of 3 d induces a marked (> 10-fold) increase in T reg cell numbers in many organs, including the liver and gut as well as the spleen and lymph nodes, and a modest increase in the thymus. The expanded T reg cells survive for 1-2 wk and are highly activated and display superior suppressive function. Pretreating with the IL-2-IL-2 mAb complexes renders the mice resistant to induction of experimental autoimmune encephalomyelitis; combined with rapamycin, the complexes can also be used to treat ongoing disease. In addition, pretreating mice with the complexes induces tolerance to fully major histocompatibility complex-incompatible pancreatic islets in the absence of immunosuppression. Tolerance is robust and the majority of grafts are accepted indefinitely. The approach described for T reg cell expansion has clinical potential for treating autoimmune disease and promoting organ transplantation.This publication has 30 references indexed in Scilit:
- Central Role of Defective Interleukin-2 Production in the Triggering of Islet Autoimmune DestructionImmunity, 2008
- Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytesNature Medicine, 2007
- Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammationNature Medicine, 2007
- Nuclear Factor-κB Regulates β-Cell DeathDiabetes, 2006
- Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cellsBlood, 2005
- In Vitro–expanded Antigen-specific Regulatory T Cells Suppress Autoimmune DiabetesThe Journal of Experimental Medicine, 2004
- Regulatory T cells in transplantation toleranceNature Reviews Immunology, 2003
- Control of Regulatory T Cell Development by the Transcription Factor Foxp3Science, 2003
- A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H‐2b mice: Fine specificity and T cell receptor Vβ expression of encephalitogenic T cellsEuropean Journal of Immunology, 1995
- The IL-2/IL-2 receptor system: A current overviewCell, 1993