Biaxial order in liquid crystals and their mixtures: A Potts-Ising model
- 1 November 1984
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 30 (5), 2562-2567
- https://doi.org/10.1103/physreva.30.2562
Abstract
A lattice model for binary mixtures of prolate and oblate molecules is studied, by a mapping onto a 13-state Potts-Ising model, followed by an approximate renormalization-group analysis. Four different types of phase diagram are obtained, exhibiting prolate uniaxial, biaxial, and oblate uniaxial phases. Local disorder has the nonordering property of an effective vacancy and is thus included into our mapping. Such effective vacancies can cause first-order phase transitions. Thus the biaxial phase can disorder either directly through a ridge of first-order transitions, or via an intermediate uniaxial phase which vanishes at a multicritical point. In the biaxial region, the system is shown to be related to the six-state clock model, so that the latter point may be replaced by a segment of algebraic (Kosterlitz-Thouless) order in films. Similar considerations are applied to one-component systems of biaxially shaped molecules.Keywords
This publication has 27 references indexed in Scilit:
- Biaxial nematic phase, multiphase critical point, and reentry transition in binary liquid crystal mixturesThe Journal of Chemical Physics, 1984
- Phase Diagram Behaviors for Rod/Plate Liquid Crystal MixturesMolecular Crystals and Liquid Crystals, 1982
- Molecular theory of nematic liquid crystalsThe Journal of Physical Chemistry, 1982
- Uniaxial and biaxial lyotropic nematic liquid crystalsPhysical Review A, 1982
- Observation of a Biaxial Nematic Phase in Potassium Laurate-1-Decanol-Water MixturesPhysical Review Letters, 1980
- Ordered phases of a liquid of biaxial particlesPhysical Review A, 1974
- Liquid crystal phase transitions in mixtures of rodlike and platelike moleculesThe Journal of Chemical Physics, 1973
- Phase Transitions in a Fluid of Biaxial ParticlesPhysical Review Letters, 1973
- Lattice Model for Biaxial Liquid CrystalsThe Journal of Chemical Physics, 1972
- Ordered States of a Nematic LiquidPhysical Review Letters, 1970