Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport

Abstract
An experimental scheme (double pump/reflectivity probe using femtosecond laser pulses) enables the investigation of nonequilibrium electron dynamics at metal surfaces by measuring the equilibrated surface temperature. The competition between electron-phonon coupling and hot-electron transport gives rise to a reduced equilibrated temperature when the two pump pulses overlap in time, and provides a way of accurately determining the electron-phonon coupling constant. These observations have important consequences for femtosecond photochemical investigations.