Mechanism and structure in chemical ionization mass spectrometry: tricyclic flavanoid compounds

Abstract
The chemical ionization mass spectra of a series of tricyclic flavanoid compounds have been examined using isobutane and hydrogen as reagent gases and the fragmen- tation modes have been correlated systematically in terms of structure. The technique produces simple fragmentation patterns and abundant metastable ions. The use of deuterium as reagent gas reveals the influence of extraneous water on the spectra and facilitates the interpretation of the fragmentation pathways. The fragment ions appear to arise from isomeric progenitors protonated at different sites in the molecules.