Abstract
This article presents a biologically inspired model for motor skills imitation. The model is composed of modules whose functinalities are inspired by corresponding brain regions responsible for the control of movement in primates. These modules are high-level abstractions of the spinal cord, the primary and premotor cortexes (M1 and PM), the cerebellum, and the temporal cortex. Each module is modeled at a connectionist level. Neurons in PM respond both to visual observation of movements and to corresponding motor commands produced by the cerebellum. As such, they give an abstract representation of mirror neurons. Learning of new combinations of movements is done in PM and in the cerebellum. Premotor cortexes and cerebellum are modeled by the DRAMA neural architecture which allows learning of times series and of spatio-temporal invariance in multimodal inputs. The model is implemented in a mechanical simulation of two humanoid avatars, the imitator and the imitatee. Three types of sequences learning are presented: (1) learning of repetitive patterns of arm and leg movements; (2) learning of oscillatory movements of shoulders and elbows, using video data of a human demonstration; 3) learning of precise movements of the extremities for grasp and reach.