n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells

Abstract
A novel [6,6]-phenyl-C61-butyric acid methyl styryl ester (PCBM-S) was synthesized and employed as an electron transporting interfacial layer for bulk heterojunction polymer solar cells with an inverted device configuration. After the deposition of PCBM-S film from solution, the styryl groups of PCBM-S were polymerized by post-thermal treatment to form a robust film which is resistive to common organic solvents. This allows the solution processing of upper bulk heterojunction film without eroding the PCBM-S layer. Additionally, the PCBM-S was n-doped with decamethylcobaltocene (DMC) to increase the conductivity of the film, which resulted in a significantly improved power conversion efficiency from 1.24% to 2.33%. The improved device performance is due to the decrease of series resistance and improved electron extraction property of the n-doped PCBM-S film.