Planning the motions of a mobile robot in a sensory uncertainty field
- 1 January 1994
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Pattern Analysis and Machine Intelligence
- Vol. 16 (10), 1002-1017
- https://doi.org/10.1109/34.329009
Abstract
Failures in mobile robot navigation are often caused by errors in localizing the robot relative to its environment. This paper explores the idea that these errors can be considerably reduced by planning paths taking the robot through positions where pertinent features of the environment can be sensed. It introduces the notion of a "sensory uncertainty field" (SUF). For every possible robot configuration q, this field estimates the distribution of possible errors in the robot configuration that would be computed by a localization function matching the data given by the sensors against an environment model, if the robot was at q. A planner is proposed which uses a precomputed SUF to generate paths that minimize expected errors or any other criterion combining, say, path length and errors. This paper describes in detail the computation of a specific SUF for a mobile robot equipped with a classical line-striping camera/laser range sensor. It presents an implemented SUF-based motion planner for this robot and shows paths generated by this planner. Navigation experiments were conducted with mobile robots using paths generated by the SUF-based planner and other paths. The former paths were tracked with greater precision than the others. The final section of the paper discusses additional research issues related to SUF-based planning.Keywords
This publication has 34 references indexed in Scilit:
- Exploiting visual constraints in robot motion planningPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Landmark-Based Robot NavigationAlgorithmica, 1995
- Dynamic Map Building for an Autonomous Mobile RobotThe International Journal of Robotics Research, 1992
- Robot motion planning with uncertainty in control and sensingArtificial Intelligence, 1991
- Mobile robot localization by tracking geometric beaconsIEEE Transactions on Robotics and Automation, 1991
- Robot Motion PlanningPublished by Springer Nature ,1991
- Qualitative navigation for mobile robotsArtificial Intelligence, 1990
- Stereo vision and navigation in buildings for mobile robotsIEEE Transactions on Robotics and Automation, 1989
- An exploration of sensorless manipulationPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1986
- Automatic Synthesis of Fine-Motion Strategies for RobotsThe International Journal of Robotics Research, 1984