Dual Role of SnoN in Mammalian Tumorigenesis
- 1 January 2007
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 27 (1), 324-339
- https://doi.org/10.1128/mcb.01394-06
Abstract
SnoN is an important negative regulator of transforming growth factor β signaling through its ability to interact with and repress the activity of Smad proteins. It was originally identified as an oncoprotein based on its ability to induce anchorage-independent growth in chicken embryo fibroblasts. However, the roles of SnoN in mammalian epithelial carcinogenesis have not been well defined. Here we show for the first time that SnoN plays an important but complex role in human cancer. SnoN expression is highly elevated in many human cancer cell lines, and this high level of SnoN promotes mitogenic transformation of breast and lung cancer cell lines in vitro and tumor growth in vivo, consistent with its proposed prooncogenic role. However, this high level of SnoN expression also inhibits epithelial-to-mesenchymal transdifferentiation. Breast and lung cancer cells expressing the shRNA for SnoN exhibited an increase in cell motility, actin stress fiber formation, metalloprotease activity, and extracellular matrix production as well as a reduction in adherens junction proteins. Supporting this observation, in an in vivo breast cancer metastasis model, reducing SnoN expression was found to moderately enhance metastasis of human breast cancer cells to bone and lung. Thus, SnoN plays both protumorigenic and antitumorigenic roles at different stages of mammalian malignant progression. The growth-promoting activity of SnoN appears to require its ability to bind to and repress the Smad proteins, while the antitumorigenic activity can be mediated by both Smad-dependent and Smad-independent pathways and requires the activity of small GTPase RhoA. Our study has established the importance of SnoN in mammalian epithelial carcinogenesis and revealed a novel aspect of SnoN function in malignant progression.Keywords
This publication has 70 references indexed in Scilit:
- Akt Blocks Breast Cancer Cell Motility and Invasion through the Transcription Factor NFATMolecular Cell, 2005
- Smad-dependent and Smad-independent pathways in TGF-β family signallingNature, 2003
- Betaglycan Expression Is Transcriptionally Up-regulated during Skeletal Muscle DifferentiationPublished by Elsevier ,2003
- Signal Transduction by the TGF-β SuperfamilyScience, 2002
- TGF-β signaling: positive and negative effects on tumorigenesisCurrent Opinion in Genetics & Development, 2002
- Leaving the neighborhood: molecular mechanisms involved during epithelial‐mesenchymal transitionBioEssays, 2001
- SNO Is a Probable Target for Gene Amplification at 3q26 in Squamous-Cell Carcinomas of the EsophagusBiochemical and Biophysical Research Communications, 2001
- The Activity of Guanine Exchange Factor NET1 Is Essential for Transforming Growth Factor-β-mediated Stress Fiber FormationJournal of Biological Chemistry, 2001
- Cognitive Deficits After Focal Cerebral Ischemia in MiceStroke, 2000
- A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined mediumIn Vitro Cellular & Developmental Biology, 1987