Effect of Freezing and Cold Storage on Phospholipids in Developing Soybean Cotyledons

Abstract
Freezing of plant tissue adversely affects lipid composition. Immature soybean cotyledons (Glycine max L. Merr.) var. “Harosoy 63” were frozen with liquid N2, dry ice, or stored in a freezer (−20 C) before lipid extraction. The effects of freezing temperature, thawing rate, and cold storage on the lipid composition of frozen tissue revealed significantly higher levels of phosphatidic acid, and diminished levels of phosphatidylcholine, phosphatidylethanolamine, and N-acylphosphatidylethanolamine from the control. Regardless of freezing temperature, phosphatidic acid levels increased from 4.7 mole% to nearly 50 mole% of the total phospholipid when frozen tissues were stored 10 days at −20 C. During the same period, N-acylphosphatidylethanolamine decreased from 54.1 mole% to 6.6 mole% phospholipid. At least 8 mole% of the phosphatidic acid increase occurred during slow thawing of the frozen tissues. In autoclaved samples, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, and N-acylphosphatidylethanolamine levels were not different from the control. Labeling of the lipid-glycerol with 3H, and fatty acids with 14C, demonstrated the degradation product was primarily phosphatidic acid. Apparently enzymic destruction of the phospholipids occurred during freezing, cold storage, and thawing.