The chick and human collagen α1(XII) gene promoter

Abstract
A single gene encodes collagen XII, an extracellular matrix protein with three large fibronectin-related subunits connected via a short collagen triple helix. Since collagen XII is a component of a specific subset of collagen fibrils in tissues bearing high tensile stress, we are interested to know how its restricted expression is regulated. To this aim, we have isolated the region around the first exon of both the chick and human collagen alpha1(XII) gene. The upstream sequences of the two genes share common features but are not related. Strong similarity starts about 100 bp 5' of the first exon and ends 100 bp into the first intron. In addition, two large conserved regions (56-63% similarity) were found in the first intron. A single major and two clusters of minor transcription start sites were identified in both the chick and human gene. To test for promoter activity, conserved fragments from the chick gene were cloned into reporter plasmids for transient transfection of fibroblasts. A 70-bp stretch containing a conserved nuclear factor-1 binding sequence just upstream of the first transcription start site was found to work as a basal promoter. An adjacent, but nonoverlapping short segment including the more downstream start sites and a conserved TATTAA sequence exhibited independent promoter activity. GC-rich sequences just 5' and 3' of the minimal promoter fragments were required for full activity. In contrast, inclusion of more upstream sequences (up to 2.4 kb) had no effect. The two conserved regions in the first intron showed no promoter activity on their own but modulated activity when linked to autologous or heterologous promoters. Specifically, one of these intronic regions might contain enhancer element(s) that respond to mechanical stress acting on the fibroblasts. We conclude that the collagen XII gene is driven by a basal promoter with two halves that can act independently; conserved control regions are located around the first exon and in the first intron.