Abstract
We have previously shown that extracts prepared from most of the yeast temperature-sensitive rna mutants are heat sensitive for pre-mRNA splicing in vitro, and that the products of the corresponding RNA genes are essential for the early stages of the splicing region. In this report, we demonstrate that most heat-inactivated mutant extracts do not form the spliceosome, suggesting that their gene products are likely to be involved in spliceosome formation. Heat-inactivated rna2 extracts, on the other hand, do form a splicing-dependent 40S complex containing uncleaved pre-mRNA exclusively. The pre-mRNA in the 40S complex can be converted to the splicing products in the presence of ATP and complementing extracts. These results demonstrate that: (1) the 40S complex formed in heat-inactivated rna2 extracts is a spliceosome (termed the rna2 delta spliceosome), (2) the spliceosome is a functional intermediate in the splicing pathway, and (3) the splicing process can be dissected into two steps, spliceosome formation and cleavage-ligation reactions. Additional results indicate that at least two extrinsic factors, as well as the RNA2 gene product, are required for complementation of the rna2 delta spliceosome. A three-step mechanism for nuclear pre-mRNA splicing in yeast is proposed.