Pleiotropy and the Genomic Location of Sexually Selected Genes
- 1 June 2004
- journal article
- Published by University of Chicago Press in The American Naturalist
- Vol. 163 (6), 800-808
- https://doi.org/10.1086/386297
Abstract
Sexual selection drives the evolution of traits involved in the competition for mates. Although considerable research has focused on the evolution of sexually selected traits, their underlying genetic architecture is poorly resolved. Here I address the pleiotropic effects and genomic locations of sexually selected genes. These two important characteristics can impose considerable constraints on evolvability and may influence our understanding of the process of sexual selection. Theoretical models are inconsistent regarding the genomic location of sexually selected genes. Models that do not incorporate pleiotropic effects often predict sex linkage. Conversely, sex linkage is not explicitly predicted by the condition-dependent model (which considers pleiotropic effects). Evidence largely based on reciprocal crosses supports the notion of sex linkage. However, although they infer genetic contribution, reciprocal crosses cannot identify the genes or their pleiotropic effects. By surveying the genome of Drosophila melanogaster, I provide evidence for the genomic location and pleiotropic effects of 63 putatively sexually selected genes. Interestingly, most are pleiotropic (73%), and they are not preferentially sex linked. Their pleiotropic effects include fertility, development, life span, and viability, which may contribute to condition and/or fitness. My findings may also provide evidence for the capture of genetic variation in condition via the pleiotropic effects of sexually selected genes.Keywords
This publication has 42 references indexed in Scilit:
- SEXUAL SELECTION AND SEX LINKAGEEvolution, 2004
- Genetic basis of male sexual behaviorJournal of Neurobiology, 2002
- Quantitative trait loci affecting a courtship signal in Drosophila melanogasterHeredity, 2002
- The Acp26Aa seminal fluid protein is a modulator of early egg hatchability inDrosophila melanogasterProceedings Of The Royal Society B-Biological Sciences, 2001
- Initial sequencing and analysis of the human genomeNature, 2001
- The role of male accessory gland protein Acp36DE in sperm competition inDrosophila melanogasterProceedings Of The Royal Society B-Biological Sciences, 2000
- The Genome Sequence of Drosophila melanogasterScience, 2000
- Female song preference and theperiod gene inDrosophilaBehavior Genetics, 1993
- The Relative Rates of Evolution of Sex Chromosomes and AutosomesThe American Naturalist, 1987
- THE EVOLUTION OF DOMINANCEBiological Reviews, 1931