Abstract
4 2P1/2–4 2P3/2 mixing in potassium, induced by collisions with N2, H2, D2, and HD, was studied using techniques of sensitized fluorescence. The potassium vapor-gas systems, in which the potassium vapor pressure was kept very low to avoid radiation trapping, was irradiated with one component of the resonance doublet. The fluorescence which contained both components of the doublet was monitored at right angles to the direction of excitation. The following cross sections for mixing and quenching were obtained from measurements of relative intensities of the fluorescent components. For K–N2 collisions: Q12(2P1/22P3/2) = 100 Å2, Q21(2P1/22P3/2) = 66 Å2, Q10(2S1/22P1/2) = 35 Å2, Q20(2S1/22P3/2) = 39 Å2. For K–H2 collisions: Q12 = 76 Å2, Q21 = 53 Å2, Q10 = 7 Å2, Q20 = 4 Å2. For K–D2: Q12 = 72 Å2, Q21 = 50 Å2, Q10 = 2 Å2, Q20 = 1 Å2. For K–HD: Q12 = 74 Å2, Q21 = 49 Å2, Q20 = 11 Å2, Q20 = 14 Å2. An analysis of these results suggests the presence of resonances with the molecular rotational levels.