Intra-Deme Molecular Diversity in Spatially Expanding Populations
Top Cited Papers
Open Access
- 1 January 2003
- journal article
- research article
- Published by Oxford University Press (OUP) in Molecular Biology and Evolution
- Vol. 20 (1), 76-86
- https://doi.org/10.1093/molbev/msg009
Abstract
We report here a simulation study examining the effect of a recent spatial expansion on the pattern of molecular diversity within a deme. We first simulate a range expansion in a virtual world consisting in a two-dimensional array of demes exchanging a given proportion of migrants (m) with their neighbors. The recorded demographic and migration histories are then used under a coalescent approach to generate the genetic diversity in a sample of genes. We find that the shape of the gene genealogies and the overall pattern of diversity within demes depend not only on the age of the expansion but also on the level of gene flow between neighboring demes, as measured by the product Nm, where N is the size of a deme. For small Nm values (< approximately 20 migrants sent outwards per generation), a substantial proportion of coalescent events occur early in the genealogy, whereas with larger levels of gene flow, most coalescent events occur around the time of the onset of the spatial expansion. Gene genealogies are star shaped, and mismatch distributions are unimodal after a range expansion for large Nm values. In contrast, gene genealogies present a mixture of both very short and very long branch lengths, and mismatch distributions are multimodal for small Nm values. It follows that statistics used in tests of selective neutrality like Tajima's D statistic or Fu's FS statistic will show very significant negative values after a spatial expansion only in demes with high Nm values. In the context of human evolution, this difference could explain very simply the fact that analyses of samples of mitochondrial DNA sequences reveal multimodal mismatch distributions in hunter-gatherers and unimodal distributions in post-Neolithic populations. Indeed, the current simulations show that a recent increase in deme size (resulting in a larger Nm value) is sufficient to prevent recent coalescent events and thus lead to unimodal mismatch distributions, even if deme sizes (and therefore Nm values) were previously much smaller. The fact that molecular diversity within deme is so dependent on recent levels of gene flow suggests that it should be possible to estimate Nm values from samples drawn from a single deme.Keywords
This publication has 45 references indexed in Scilit:
- Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approachProceedings of the National Academy of Sciences, 2001
- Computer note. SIMCOAL: a general coalescent program for the simulation of molecular data in interconnected populations with arbitrary demographyJournal of Heredity, 2000
- The genetic legacy of the Quaternary ice agesNature, 2000
- Why hunter-gatherer populations do not show signs of Pleistocene demographic expansionsProceedings of the National Academy of Sciences, 1999
- Genetic traces of ancient demographyProceedings of the National Academy of Sciences, 1998
- The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphismMolecular Biology and Evolution, 1996
- COALESCENTS AND GENEALOGICAL STRUCTURE UNDER NEUTRALITYAnnual Review of Genetics, 1995
- Indo‐European origins: A computer‐simulation test of five hypothesesAmerican Journal of Physical Anthropology, 1995
- A multi-dimensional coalescent process applied to multi-allelic selection models and migration modelsTheoretical Population Biology, 1991
- The coalescentStochastic Processes and their Applications, 1982