Estimating energy expenditure using accelerometers

Abstract
The purpose of this study was to examine the validity of published regression equations designed to predict energy expenditure (EE) from accelerometers (Actigraph, Actical, and AMP-331) compared to indirect calorimetry, over a wide range of activities. Forty-eight participants (age: 35 ± 11.4 years) performed various activities that ranged from sedentary behaviors (lying, sitting) to vigorous exercise. The activities were split into three routines of six activities, and each participant performed at least one routine. The participants wore three devices (Actigraph, Actical, and AMP-331) and simultaneously, EE was measured with a portable metabolic system. For the Actigraph, 15 previously published equations were used to estimate EE from the accelerometer counts. For the Actical, two published equations were used to estimate EE from the accelerometer counts. For the AMP-331 we used the manufacturer’s equation to estimate EE. The Actigraph and Actical regressions tended to overestimate walking and sedentary activities and underestimate most other activities. The AMP-331 gave a close estimate of EE during walking, but overestimated sedentary/light activities and underestimated all other activities. The only equation not significantly different from actual time spent in both light and moderate physical activity was the Actigraph Freedson kcal equation. All equations significantly underestimated time spent in vigorous physical activity (P < 0.05). In conclusion, no single regression equation works well across a wide range of activities for the prediction of EE or time spent in light, moderate, and vigorous physical activity.