Structural diversity in the HLA‐A10 family of alleles: Correlations with serology

Abstract
The HLA‐A10 crossreacting group consists of the A25, A26, A34, A43 and A66 antigens. Here, we report allelic sequences for A43 and for 2 subtypes of both A26 and A34. Combining these results with previously determined sequences for A25, A26 and A66 enables molecular comparison of all the serologically defined A10 antigens. They form a closely related and well‐defined group of alleles which may have originated with A*2601. Patterns of serological crossreactivity are correlated with sequence and a public epitope shared by A33 and members of the A10 family is localized to residues R62 and N63. The A*2501, A*4301 and A*6601 alleles appear to have derived from A*2601 by single gene conversion events with other HLA‐A alleles. In the case of A*4301, the donor allele was probably an A29 allele as A*4301 has a small element of sequence in the α1 helix (residues L62 and Q63) uniquely shared with A29. The chimaeric structure of A43 explains the reactivity of A43 molecules with both A10 and A29 alloantisera. The rare Oriental variant of A26 (A26v*) is encoded by an allele (A*2602) that differs from A*2601 by a unique nucleotide substitution which changes aspartate to asparagine at position 116 in the floor of the peptide binding groove. Thus A*2602 is a functionally distinct allele that originated by a point mutation. Alleles encoding A34 and A66 antigens are found to have very similar structures, explaining the difficulty in their serological definition. Further illustration of serological difficulties in discriminating the antigens of the A10 group is the finding that the A26.2 electrophoretic variant of A26 is identical in structure to A*6601.