Fuzzy neural network and fuzzy expert system for load forecasting

Abstract
A hybrid neural network fuzzy expert system is developed to forecast short-term electric load accurately. The fuzzy membership values of the load and other weather variables are the inputs to the neural network, and the output comprises the membership values of the predicted load. An adaptive fuzzy correction scheme is used to forecast the final load by using a fuzzy rule base and fuzzy inference mechanism. Extensive studies have been performed for all seasons, and a few examples are presented in the paper, including average, peak and hourly load forecasts.

This publication has 3 references indexed in Scilit: