Human Embryonic Stem Cells Develop Into Multiple Types of Cardiac Myocytes

Abstract
Human embryonic stem (hES) cells can differentiate in vitro, forming embryoid bodies (EBs) composed of derivatives of all three embryonic germ layers. Spontaneously contracting outgrowths from these EBs contain cardiomyocytes (CMs); however, the types of human CMs and their functional properties are unknown. This study characterizes the contractions and action potentials (APs) from beating EB outgrowths cultured for 40 to 95 days. Spontaneous and electrical field-stimulated contractions were measured with video edge-detection microscopy. β-Adrenergic stimulation with 1.0 μmol/L isoproterenol resulted in a significant increase in contraction magnitude. Intracellular electrical recordings using sharp KCl microelectrodes in beating EB outgrowths revealed three distinct classes of APs: nodal-like, embryonic atrial-like, and embryonic ventricular-like. The APs were described as embryonic based on the relatively depolarized resting membrane potential and slow AP upstroke. Repeated impalements of an individual b...