Electrochemical Investigations of Cobalt‐Doped LiMn2 O 4 as Cathode Material for Lithium‐Ion Batteries

Abstract
A wide range (y = 0.05–0.33) of Co‐doped spinels were synthesized and electrochemically characterized. These Co‐doped spinels showed improved specific capacity and capacity retention over pure spinels. Electrochemical impedance spectroscopy and the linear polarization resistance technique were used to determine the transport and electrochemical kinetic parameters of Co‐doped spinels. The presence of Co in the spinel inhibits the passivation process occurring on the surface of the cathode. Also, Co increases the exchange current density and facilitates the charge‐transfer reaction of the active material. The lower self‐discharge observed for Co‐doped spinels was attributed to their low surface areas. The cumulative capacity loss estimated for a pure spinel resulting from self‐discharge in the first 30 h was 3 and 6 times larger than those estimated for Co‐doped spinels with y = 0.05 and y = 0.16 in , respectively.