Control of diving responses by carotid bodies and baroreceptors in ducks

Abstract
The precise role of carotid body chemoreceptors and systemic baroreceptors in cardiovascular responses during experimental diving in ducks is controversial. The diving responses of chronically baroreceptor-denervated, chemoreceptor-denervated, and combined baroreceptor- and chemoreceptor-denervated White Pekin ducks, A. platyrhynchos, were compared with those of intact and sham-operated birds. All 3 types of denervation elevated predive heart rates on average by 100-150 beats/min. During submergence, the cardiac rate of the barodenervates quickly dropped and after 60 s stabilized at levels similar to those of submerged intact ducks for the remainder of a 2-min dive. Arterial blood pressure declined drastically in the barodenervates. Ducks without functional carotid bodies showed significant bradycardia during submergence, although heart rate only fell to the predive rate of intact animals. Birds with combined baroreceptor and chemoreceptor denervation exhibited the same degree of bradycardia as chemoreceptor denervates, and arterial blood pressure rose spectacularly during a dive. During experimental diving in ducks cardiac responses are not baroreflexive in origin, the major portion of bradycardia is due to stimulation of carotid body chemoreceptors, and intact systemic baroreceptors appear essential for maintenance of blood pressure.