Articular Chondrocytes Produce Factors That Inhibit Maturation of Sternal Chondrocytes in Serum-Free Agarose Cultures: A TGF-β Independent Process
- 1 September 1997
- journal article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 12 (9), 1368-1377
- https://doi.org/10.1359/jbmr.1997.12.9.1368
Abstract
Under normal conditions, articular chondrocytes persist throughout postnatal life, whereas "transient" chondrocytes, which constitute the bulk of prenatal and early postnatal cartilaginous skeleton, undergo maturation, hypertrophy, and replacement by bone cells. The mechanisms regulating the markedly different behavior and fate of articular and transient chondrocytes are largely unclear. In the present study, we asked whether articular chondrocytes possess dominant antimaturation properties which may subtend their ability to persist throughout life. Adult chicken articular chondrocytes and transient maturing chondrocytes from the core region of day 17, chick embryo cephalic sternum were cultured or cocultured in serum-free agarose conditions. When the sternal cells were grown by themselves, they quickly developed into hypertrophic type X collagen-synthesizing cells; however, when they were cocultured with as few as 10% articular chondrocytes or fed with articular chondrocyte-conditioned medium, their maturation was markedly impaired, as revealed by a sharp drop in type X collagen synthesis. A similar, albeit less potent, antimaturation activity characterized resting and proliferating immature chondrocytes isolated from other regions of embryonic sternum. Transforming growth factor-beta 2 (TGF-beta 2) was previously suggested to be an inhibitor of chondrocyte maturation. We found, however, that treatment with a neutralizing antiserum to TGF-beta did not counteract the inhibition of maturation in cocultures of articular and maturing core sternal chondrocytes. Indeed, articular chondrocytes produced and accumulated relatively low levels of TGF-beta in their culture medium, about 15 ng/ml/48 h, of which over 90% was latent; surprisingly, maturing sternal core chondrocytes accumulated over 10-fold more TGF-beta in the medium, about 150 ng/ml/48 h, of which over 20% was endogenously active. These results indicate that articular chondrocytes do possess dominant antimaturation properties which appear to be TGF-beta independent. The TGF-beta s may thus have a more prominent role in the terminal phases of chondrocyte maturation, as indicated by their abundance and greater activity in hypertrophic chondrocytes.Keywords
This publication has 44 references indexed in Scilit:
- Tenascin-C and the development of articular cartilageMatrix Biology, 1995
- Regulation of chondrocyte maturation by fibroblast growth factor‐2 and parathyroid hormoneJournal of Orthopaedic Research, 1995
- Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiationJournal of Bone and Mineral Research, 1995
- Autocrine signals enable chondrocytes to survive in culture.The Journal of cell biology, 1994
- Tenascin is associated with articular cartilage developmentDevelopmental Dynamics, 1993
- Cell hypertrophy and type X collagen synthesis in cultured articular chondrocytesExperimental Cell Research, 1991
- Resting chondrocytes in culture survive without growth factors, but are sensitive to toxic oxygen metabolites.The Journal of cell biology, 1990
- The Biology of OsteoarthritisNew England Journal of Medicine, 1989
- Active and latent forms of transforming growth factor beta activity in synovial effusions.The Journal of Experimental Medicine, 1989
- Synthesis of a low molecular weight collagen by chondrocytes from the presumptive calcification region of the embryonic chick sterna: the influence of culture with collagen gels.The Journal of cell biology, 1984