Synthesis of myelin, particulate, and soluble protein subfractions of rat sciatic nerve during the early stage of Wallerian degeneration: A comparison of metabolic studies using double and single isotope methods and recovery

Abstract
The recovery, electrophoretic composition and synthesis of the myelin, particulate protein and soluble protein subfractions of rat sciatic nerve were compared in normal, sham-operated, and degenerating rat sciatic nerve at one, three and five days after neurotomy. Both single and double isotope methods were used to measure changes in synthesis in vitro and double isotope methods were used in vivo. The wet weights of nerves undergoing Wallerian degeneration for 5 days increased by 40 percent compared to normal and sham-operated nerves. The recovery, specific radioactivity, and synthesis of the myelin was reduced. The effect on myelin protein synthesis was similar in vitro and in vivo. The myelin loss was relatively constant in amount (30–40 μg) regardless of differences in nerve sizes of young and old rats, consequently the percentage of myelin loss was inversely proportional to nerve size. The recovery of particulate protein increased, its rate of synthesis remained unchanged, and accordingly the specific radioactivity was decreased. The recovery, specific radioactivity, and the rate of synthesis of the soluble protein fraction were all elevated. The protein composition of the three fractions, as analyzed qualitatively by polyacrylamide disc gel electrophoresis, remained essentially unchanged through five days of degeneration. With regard to comparisons of the single and double isotope methods, results shows that the latter are more ideally suited to measuring changes in synthesis during the non-steady state conditions that are characteristics of rapid degeneration.