Flux Analysis of Central Metabolic Pathways in Geobacter metallireducens during Reduction of Soluble Fe(III)-Nitrilotriacetic Acid
Open Access
- 15 June 2007
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 73 (12), 3859-3864
- https://doi.org/10.1128/aem.02986-06
Abstract
We analyzed the carbon fluxes in the central metabolism of Geobacter metallireducens strain GS-15 using 13 C isotopomer modeling. Acetate labeled in the first or second position was the sole carbon source, and Fe-nitrilotriacetic acid was the sole terminal electron acceptor. The measured labeled acetate uptake rate was 21 mmol/g (dry weight)/h in the exponential growth phase. The resulting isotope labeling pattern of amino acids allowed an accurate determination of the in vivo global metabolic reaction rates (fluxes) through the central metabolic pathways using a computational isotopomer model. The tracer experiments showed that G. metallireducens contained complete biosynthesis pathways for essential metabolism, and this strain might also have an unusual isoleucine biosynthesis route (using acetyl coenzyme A and pyruvate as the precursors). The model indicated that over 90% of the acetate was completely oxidized to CO 2 via a complete tricarboxylic acid cycle while reducing iron. Pyruvate carboxylase and phosphoenolpyruvate (PEP) carboxykinase were present under these conditions, but enzymes in the glyoxylate shunt and malic enzyme were absent. Gluconeogenesis and the pentose phosphate pathway were mainly employed for biosynthesis and accounted for less than 3% of total carbon consumption. The model also indicated surprisingly high reversibility in the reaction between oxoglutarate and succinate. This step operates close to the thermodynamic equilibrium, possibly because succinate is synthesized via a transferase reaction, and the conversion of oxoglutarate to succinate is a rate-limiting step for carbon metabolism. These findings enable a better understanding of the relationship between genome annotation and extant metabolic pathways in G. metallireducens .Keywords
This publication has 38 references indexed in Scilit:
- Pathway Confirmation and Flux Analysis of Central Metabolic Pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass SpectrometryJournal of Bacteriology, 2007
- Anaerobic Central Metabolic Pathways in Shewanella oneidensis MR-1 Reinterpreted in the Light of Isotopic Metabolite LabelingJournal of Bacteriology, 2007
- Shewanella oneidensis MR-1 Fluxome under Various Oxygen ConditionsApplied and Environmental Microbiology, 2007
- Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based ModelingApplied and Environmental Microbiology, 2006
- Vanadium Respiration by Geobacter metallireducens : Novel Strategy for In Situ Removal of Vanadium from GroundwaterApplied and Environmental Microbiology, 2004
- New tools for mass isotopomer data evaluation in 13C flux analysis: Mass isotope correction, data consistency checking, and precursor relationshipsBiotechnology & Bioengineering, 2003
- Geobacter metallireducens accesses insoluble Fe(iii) oxide by chemotaxisNature, 2002
- Electrode-Reducing Microorganisms That Harvest Energy from Marine SedimentsScience, 2002
- GC‐MS Analysis of Amino Acids Rapidly Provides Rich Information for Isotopomer BalancingBiotechnology Progress, 2000
- Thermodynamic Framework for Evaluating PAH Degradation in the SubsurfaceGroundwater, 1991