Intrinsic Current−Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping

Abstract
We demonstrate that the electronic devices built on patterned graphene nanoribbons (GNRs) can be made with atomic-perfect-interface junctions and controlled doping via manipulation of edge terminations. Using first-principles transport calculations, we show that the GNR field effect transistors can achieve high performance levels similar to those made from single-walled carbon nanotubes, with ON/OFF ratios on the order of 103−104, subthreshold swing of 60 meV per decade, and transconductance of 9.5 × 103 Sm-1.