Binding of ricin A chain to rat liver ribosomes: Relationship to ribosome inactivation

Abstract
Ricin A chain was radioactively labeled using reductive alkylation, lactoperoxidase catalyzed iodination, and reaction with iodoacetamide or N-ethylmaleimide (NEM). The inhibition of cell-free rat liver protein synthesis by the modified A chains and the ribosome binding characteristics of each of the labeled derivatives was examined. [3H] NEM was found to quantitatively react with the A chain sulfhydryl group normally involved in a disulfide bond with the B chain in intact ricin. Labeling the protein with [3H] NEM had no effect on the in vitro inhibition of protein synthesis by the A chain. [3H] NEM-labeled A chain binds to rat liver ribosomes in a manner which is dependent on the concentrations of NaCl and Mg2+. At optimal Mg2+ concentration (5.5 mM), A chain binding to ribosomes is saturable and fully reversible either by dilution of the reaction mixture or by addition of unlabeled A chain. At 5.5 mM Mg2+, A chain was found to bind to a single site on rat liver ribosomes with a dissociation constant of 6.2 X 10−8 M. [3H] NEM-labeled A chain did not bind to isolated 40S ribosomal subunits and bound to 60S ribosomal subunits with a 1 : 1 molar stoichiometry and a dissociation constant of 2.2 X 10−7 M. The relationship between ribosome binding and A chain inhibition of eucaryotic protein synthesis is discussed.