Poly (D, L-lactide-co-glycolide)/DNA microspheres to facilitate prolonged transgene expression in airway epithelium in vitro, ex vivo and in vivo

Abstract
Repeat administration of gene therapy for cystic fibrosis is likely to be essential for long-term clinical efficacy. This may be minimized by the use of slow-release gene transfer preparations with more prolonged expression and longer dosing intervals for the patient. Poly(D-L-lactide-co-glycolide) (PLG) is a biodegradable and biocompatible polymer that has been used to encapsulate plasmid DNA. PLG-DNA microspheres were generated and characterized with respect to morphology, size (80% of particles <5.2 microm), and encapsulation efficiency (50.7+/-2.3%, n=6). Gel electrophoresis of DNA re-extracted from the microspheres confirmed that despite a decrease in the proportion of supercoiled conformation, it had not been degraded by the preparation process. Gene transfer efficiency was tested using microspheres encapsulating the reporter gene beta-galactosidase in vitro on Cos 7 cells and a CF airway epithelial line (CFTEo approximately ) and ex vivo in a sheep tracheal (s.t.) model. In both cases, transgene expression was significantly (P<0.01) lower at the first time point tested (24 h in vitro, 48 h ex vivo) compared to lipid-#67-mediated gene transfer. However, PLG-mediated expression in vitro was sustained at 48 h, while lipid #67-mediated expression levels had dropped significantly (P<0.05) to 50.3+/-13.7 and 38.2+/-2.7% (Cos 7 and CFTEo approximately cells, respectively) of the 24-h level. This pattern was also seen in the s.t. model where at 72 h, PLG-mediated expression was 125.4+/-7.2% of the 48-h level demonstrating significantly (P<0.05) better retention of transfection efficiency than lipid #67, where levels had fallen to approximately half the 48 h level. By 96 h, expression was still retained in the PLG-transfected group (87.3+/-12.5% of 48 h expression) but was undetectable in the lipid -#67-transfected s.t. Finally, PLG microspheres, encapsulating the reporter gene chloramphenicol transferase (CAT, 80 microg) were instilled intranasally into Balb/C mice. Compared to lipid-#67-mediated delivery, where whole lung CAT expression was highest at 48 h (13.7 x 10(3)+/-0.05 CAT U/microg protein, n=6) and then not detectable at further time points, CAT expression was not detectable in PLG-transfected mice at 48 h, but was detectable at 7, 14 and 21 days after transfection. These data demonstrate that PLG-mediated gene transfer can produce prolonged gene expression in airway epithelia. However, gene transfer efficiency still requires significant improvement.