Quantification of random motility and chemotaxis bacterial transport coefficients using individual‐cell and population‐scale assays
- 17 September 2001
- journal article
- research article
- Published by Wiley in Biotechnology & Bioengineering
- Vol. 75 (3), 292-304
- https://doi.org/10.1002/bit.10021
Abstract
A number of individual-cell and population-scale assays have been introduced to quantify bacterial motility and chemotaxis. The transport coefficients reported in the literature, however, span several orders of magnitude, making it difficult to ascertain to what degree variations in bacterial species/strain, growth medium, growth and experimental conditions, and experiment type contribute to the reported differences in coefficient values. We quantified the random motility of Escherichia coli AW405 using the capillary assay, stopped-flow diffusion chamber (SFDC), and tracking microscope. We obtained good agreement for the random motility coefficient between these assays when using the same bacterial strain and consistent growth and experimental conditions. Chemotaxis of E. coli toward the attractant α-methylaspartate was quantified using the SFDC and capillary assay. Good agreement for the chemotactic sensitivity coefficient between the SFDC and the capillary assay was obtained across a limited attractant concentration range. Three different mathematical models were considered for analyzing capillary assay data to obtain a chemotactic sensitivity coefficient. These models differed by their treatment of the bacterial concentration in the chamber and the attractant concentration at the mouth. Results from our study indicate that the capillary assay, the most commonly used bacterial random motility and chemotaxis assay, can be used to accurately quantify bacterial transport coefficients over a limited range of attractant concentrations, provided experiments are performed carefully and appropriate mathematical models are used to interpret the experimental data. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 75: 292–304, 2001.Keywords
This publication has 55 references indexed in Scilit:
- A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assayBiotechnology & Bioengineering, 2000
- A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited culturesMathematical Biosciences, 1992
- Measurement of bacterial random motility and chemotaxis coefficients: I. Stopped‐flow diffusion chamber assayBiotechnology & Bioengineering, 1991
- MATHEMATICAL ANALYSIS OF CELL TRANSPORT PHENOMENA: BACTERIAL CHEMOTAXIS IN THE CAPILLARY ASSAYChemical Engineering Communications, 1987
- A Simple Quantitative Assay for Bacterial MotilityJournal of General Microbiology, 1977
- Statistical measures of bacterial motility and chemotaxisJournal of Theoretical Biology, 1975
- A Method for Measuring Chemotaxis and Use of the Method to Determine Optimum Conditions for Chemotaxis by Escherichia coliJournal of General Microbiology, 1973
- Model for chemotaxisJournal of Theoretical Biology, 1971
- The Effect of Environmental Conditions on the Motility of Escherichia coliJournal of General Microbiology, 1967
- A Method for Measuring the Motility of Bacteria and for Comparing Random and Non-random MotilityJournal of General Microbiology, 1967