Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation
- 1 July 2004
- journal article
- clinical trial
- Published by American Physiological Society in American Journal of Physiology-Endocrinology and Metabolism
- Vol. 287 (1), E25-E31
- https://doi.org/10.1152/ajpendo.00557.2003
Abstract
Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), β-hydroxyacyl-CoA dehydrogenase (β-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content ( P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO ( P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 ( P < 0.05) and UCP3 ( P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.Keywords
This publication has 33 references indexed in Scilit:
- Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscleBiochemical and Biophysical Research Communications, 2002
- Influence of pre‐exercise muscle glycogen content on exercise‐induced transcriptional regulation of metabolic genesThe Journal of Physiology, 2002
- An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrixThe FASEB Journal, 2001
- Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat dietInternational Journal of Obesity, 2001
- REGULATION OF GENE EXPRESSION BY DIETARY FATAnnual Review of Nutrition, 1999
- Differential Transcriptional Regulation of the Two Vascular Endothelial Growth Factor Receptor GenesJournal of Biological Chemistry, 1997
- The kinetics of mammalian gene expressionBioEssays, 1991
- Basic Local Alignment Search ToolJournal of Molecular Biology, 1990
- Basic local alignment search toolJournal of Molecular Biology, 1990
- Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm.Journal of Clinical Investigation, 1976