Abstract
The steady, two-dimensional, incompressible flow past a circular cylinder is calculated for Reynolds numbers up to ten. An accurate description of the flow field is found by employing the semi-analytical method of series truncation to reduce the governing partial differential equations of motion to a system of ordinary differential equations which can be integrated numerically. Results are given for Reynolds numbers between 0.4 and 10.0 (based on diameter). The Reynolds number at which separation first occurs behind the cylinder is found to be 5.75. Over the entire Reynolds number range investigated, characteristic flow parameters such as the drag coefficient, pressure coefficient, standing eddy length, and streamline pattern compare favourably with available experimental data and numerical solution results.