Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress,
Top Cited Papers
Open Access
- 1 December 2002
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 130 (4), 2129-2141
- https://doi.org/10.1104/pp.008532
Abstract
To identify genes of potential importance to cold, salt, and drought tolerance, global expression profiling was performed on Arabidopsis plants subjected to stress treatments of 4°C, 100 mm NaCl, or 200 mm mannitol, respectively. RNA samples were collected separately from leaves and roots after 3- and 27-h stress treatments. Profiling was conducted with a GeneChip microarray with probe sets for approximately 8,100 genes. Combined results from all three stresses identified 2,409 genes with a greater than 2-fold change over control. This suggests that about 30% of the transcriptome is sensitive to regulation by common stress conditions. The majority of changes were stimulus specific. At the 3-h time point, less than 5% (118 genes) of the changes were observed as shared by all three stress responses. By 27 h, the number of shared responses was reduced more than 10-fold (< 0.5%), consistent with a progression toward more stimulus-specific responses. Roots and leaves displayed very different changes. For example, less than 14% of the cold-specific changes were shared between root and leaves at both 3 and 27 h. The gene with the largest induction under all three stress treatments was At5g52310 (LTI/COR78), with induction levels in roots greater than 250-fold for cold, 40-fold for mannitol, and 57-fold for NaCl. A stress response was observed for 306 (68%) of the known circadian controlled genes, supporting the hypothesis that an important function of the circadian clock is to “anticipate” predictable stresses such as cold nights. Although these results identify hundreds of potentially important transcriptome changes, the biochemical functions of many stress-regulated genes remain unknown.Keywords
This publication has 44 references indexed in Scilit:
- Genes That Are Uniquely Stress Regulated in Salt Overly Sensitive (sos) MutantsPlant Physiology, 2001
- Gene Expression Profiles during the Initial Phase of Salt Stress in RicePlant Cell, 2001
- Large-Scale Profiling of the Arabidopsis TranscriptomePlant Physiology, 2000
- PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITYAnnual Review of Plant Physiology and Plant Molecular Biology, 2000
- Salt Tolerance Conferred by Overexpression of a Vacuolar Na + /H + Antiport in ArabidopsisScience, 1999
- Isolation of pigment‐binding early light‐inducible proteins from peaEuropean Journal of Biochemistry, 1999
- Plant stress adaptations — making metabolism moveCurrent Opinion in Plant Biology, 1998
- The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction.Plant Cell, 1997
- Molecular responses to drought and cold stressCurrent Opinion in Biotechnology, 1996
- Plant Productivity and EnvironmentScience, 1982