Abstract
Details of the blocking action of chlorisondamine, a ganglionic nicotinic blocker, on the excitatory cholinergic currents of the spiny lobster gastric mill 1 (g.m.1) muscle are described. The results are discussed primarily in terms of a sequential model in which, following the binding of chlorisondamine to the opened ion channel, the channel can undergo a transition to a stable-blocked state that requires reactivation by agonist to become unblocked. This stable-blocked state is considered a closed-blocked channel.