Decrease and long‐term recovery of choline acetyltransferase immunoreactivity in adult cat somatosensory cortex after peripheral nerve transections

Abstract
The functional reorganization of cerebral cortex following peripheral deafferentation is associated with changes in a number of neurotransmitters and related molecules. Acetylcholine (ACh) enhances neuronal responsiveness and could play a role in activity‐dependent cortical plasticity. In this study, choline acetyltransferase (ChAT) immunohistochemistry was used to investigate ACh innervation of the primary somatosensory cortex in cats sustaining complete unilateral forearm and paw denervations. Survival times of 2–52 weeks were examined. The deafferented contralateral cortex was defined electrophysiologically, and quantitative estimates of ChAT‐immunoreactive fiber density were obtained from the forelimb and hindlimb sectors of area 3b in both hemispheres. In the 3b forelimb sector contralateral to the deafferentation, a decrease in density of ChAT‐positive fibers relative to the ipsilateral hemisphere was apparent at 2 weeks and most pronounced at 13 weeks, involving all cortical layers except layer I. There was no such decrease in the hindlimb sector, but the loss of ChAT immunoreactivity extended to sectors representing proximal forelimb and trunk. Changes in ChAT immunoreactivity were no longer found after 1 year of survival. This long‐lasting but reversible lowering of ChAT immunoreactivity could result from a loss of afferent activity in basalis neurons and/or trophic influences retrogradely exerted by cortex on these cells. Reduced ACh transmission might then contribute to the loss of gamma aminobutyric acid (GABA) inhibition in the deafferented cortex by decreasing the activation of inhibitory interneurons. The long‐term recovery of a normal ChAT immunoreactivity in cortex could be a consequence of its functional reorganization.

This publication has 81 references indexed in Scilit: